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Abstract-When molecules of chemical compounds are represented by graphs, 
thermodynamic properties may be connected with numbers of certain classes 
of walks on graphs. The basic proposition of summing up contributions 
resulting from interactions of walks is related to fluid distribution functions. 
The principle of corresponding volumes and structural schemes are discussed. 
Exemplary calculations for normal alkanes and their binary mixtures give in 
many cases values within limits of the experimental accuracy. 

1. Introduction 
Consider an assembly of molecules other than monoatomic. 

From the point of view of combinatorial contributions to thermo- 
dynamic functions, dividing molecules into segments enables an 
approximate but straightforward treatment of effects of molecular 
size and shape. From the point of view of interactions, dealing with 
intersegmental rather than with intermolecular relations also repre- 
sents an improvement. In  theories of thermodynamic properties of 
homolog liquids and their mixtures, reviewed by Williamson and 
Scott,(') considerable use is made of the notion of segments. In  
approaches to the liquid state based on the principle of corre- 
sponding states, as reviewed by Patterson and Delmas,@) the same 
notion is of imFortance. 

Starting from the segment approach, we shall be particularly 
concerned with effects of neighboring segments within a molecule 
upon external inteiactions of a given segment. A convenient way 
to do this consists in utilizing the notion of walks; a walk would 
correspond to a specified number of segments taken together and 
treated as a single unit. Segments in the customary sense would 

t Now at DBpartement de Chimie, Universit6 de MontrBal, Montr6d 101, 
Canada. 
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92 WITOLD BROSTOW 

then feature in the lowest approximation-walks of length zero. In  
the next approximation, i.e. walks of length one, each non-end segment 
would constitute a part (an end point) of at least two walks ; longer 
walks may be built similarly. It is reasonable to expect that intro- 
ducing correlations between segments in such a way should improve 
the agreement of calculations with experiment. In  principle, any 
desired degree of accuracy may be obtained by considering walks of 
any desired length. 

Certain properties accessible at least in principle to macroscopic 
determination-such as the potential energy-are related somehow 
automatically to intermolecular interactions. We would like to 
represent also some other macroscopic properties-such as volume 
and its derivatives-in terms of pair interactions. It can be shown 
both by an algebraic argument and by considering radial distribution 
functions that, say, Wlar  volume of a liquid mixture may be 
obtained (as it turns out, more accurately) by summing up con- 
tributions coming from interactions of specified units rather than 
contributions of volumes of segments themselves. Pair-type relations 
describing a number of thermodynamic properties will be formulated 
for an unlimited number of species present (even if in exemplary 
calculations we intend to take advantage of a series of homologs, 
i.e. of a small number of species). 

In  a way, we have contrasted above " energetic " and " volu- 
metric " properties. We would like also to explore somehow, not 
only qualitative interrelations between the two kinds of functions, 
but also feasibility of actual calculations of quantities such as the 
excess heat of mixing H E  from volumetric properties. 

2. Molecules as Graphs. Interesting Walks 
A molecule of a chemical compound may be represented by a 

graph. According to the exact definition,@) a graph consists of a 
finite nonempty set Z of r points together with a prescribed set X 
of q unordered pairs of distinct points of Z; each member of X is 
called a line. An alternating sequence of points and lines, beginning 
and ending with points, in which each line is incident with the two 
points immediately preceding and following it, is called a walk. The 
length Z of a walk is the number of occurrences of lines in it. Thus, 
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E Q U I L I B R I U M  P R O P E R T I E S  I N  THE L I Q U I D  STATE 93 

for a given molecule one can assume e.g. that the set Z consists of 
all atoms, while the respective set X consists of bonds (whether 
single or multiple) between atoms. 

With the above few definitions, we make the following proposition : 
assume that thermodynamic properties of substances and mixtures 
in the liquid state may be calculated by summing up contributions 
resulting from interactions of walks in molecules represented by 
graphs. Our basic assumption might, and in fact does apply to some 
physical properties which are not thermodynamic ; in the present 
paper, however, we shall not deal with these. Walks of a single 
specified length only will be taken into account at  a time. We have 
also confined ourselves to liquids and solutions, leaving open the 
problem of extending our treatment to other phases. 

To apply our basic proposition, we need numbers of walks of given 
length. For each graph the respective numbers might be obtained 
by certain known operations on adjacency matrices.(3) A number 
SO obtained, however, is the total number of walks of length 1 in the 
given graph. Apart of distinguishing between certain kinds of 
walks (depending e.g. on the kinds of atoms in the underlying 
molecule) the total number of walks obtained from the adjacency 
matrix might include some physically redundant walks. For I > 1 
we have closed walks such as-denoting points by letters-" walk 
abm which we call uninteresting and eliminate by assumption. 
Moreover, from the point of view of interactions, two or more 
interesting walks may represent the same physical situation, so as 
e.g. two 4-walks (i.e. walks with I = 4) involving a 3-cycle: abcdb 
and abakb; clearly only one of them ought to be included in cal- 
culations. To be exact, we have to count not single walks but 
equivalence classes of interesting walks. Interesting walks of 
length I in a graph are defined in(4); the formulas for numbers of 
appropriate equivalence classes r, for I,< 5 are obtained in the same 
paper. For our purpose of obtaining equations describing inter- 
actions it is sufficient to know that the formulas for rl exist. 

3. Interactions and Probability Distributions 

Consider a closed system of interacting units, containing N ,  units 
of type a, Nh units of type b, etc. Generally, interacting units may 
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94 WITOLD BROSTOW 

be whole molecules, atoms, polymer segments, groups of atoms, or- 
of a particular interest here-walks of specified length and kind on 
graphs representing molecules. Denote the total number of such 
units by N : 

N = & N u ;  y =a,  b, . . . p (1) 
Introduce mole fractions xu = N,/N.  Assume that thermodynamic 
properties are obtained by summing up contributions from single 
units and also from interactions of pairs of units : 

(2) 
Representing the 

f = ZUX,f,* + zu ~,'2,xU*f;:' 
where f is a thermodynamic quantity per unit. 
pair parameter f: by 

we can rewrite (2) as 

Thus, the basic proposition of Sec. 1 is equivalent to dealing simul- 
taneously with both single and binary terms. 

Consider now the problem from the point of view of statistical 
mechanics, and make the following so called usual assumptions: 
(i) classical statistical mechanics applies ; (ii) non-interactional 
degrees of freedom of a unit me unaffected by the presence of other 
units ; (iii) the configurational energy of the system UC depends on 
the relative positions of interacting units, but not on their relative 
orientation ; (iv) according to the basic proposition outlined above, 
UC is obtained by summing up interactions of pairs only, SO that all 
contributions of higher orders are contained in the effective binary 
interactions. The partition function of the system is 

f,*,, =fw - 0.5(f,* -f;, (3) 

f = z v  &~UX,*fU,* (4) 

Q = QBQMQc (51 

where the r.h.s. terms represent respectively internal, momentum or 
kinetic, and configurational or interactional contributions. 

Configurational energy of such a system is (cf. e.g. Ref. 5) : 

UC = 0.52 ,  2u,iV,Nu,V-1 U ( ~ ~ ~ ~ ( R ) ~ , ~ ~ ( R ) ~ ~ R ~ ~ R ;  (6) f 
V is the volume of the system ; U( uv,)  is the energy of interaction of 
a y type unit with a y' type unit; R represents distance between 
two units and guu. is the radial distribution function. In  the above 
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relation the integration range is of some interest. We could, for 
instance, conhe  ourselves to values of R including nearest neighbors 
only. This would, however, not only disagree with experimental 
evidence concerning g(R)-cf. e.g. the discussion of coordination 
shells by Mikolaj and Pings@)-but also affect adversely our pre- 
dictions of values of thermodynamic funckions ; Kohler(7) has found 
that introduction of " stretched contacts " i.e. of interactions 
beyond the closest neighbors improves visibly the agreement of 
calculations with the experiment for argon. The opposite assumption 
would be to have R extending over the entire volume ; this would but 
be equivalent to saying that a pair of units in the liquid phase does 
interact at all separations, even arbitrarily large. Clearly the real 
situation lies somewhere between these two extreme cases. Fortu- 
nately, as we shall see below, the precise knowledge of the integration 
range is not necessary for meaningful calculations of thermodynamic 
functions. 

Introduce now the average value U,,. for all pairs yy' as 

Thus : 

The expression V/1-1$g,,u.4~R~ dR represents the fraction of the total 
volume of the system in which interaction of an unit of type y with 
an unit of type y' leads to a non-zero contribution to configurational 
energy. 

Another way of looking at the energy expression is by introducing 

zUu, = Nu.  V-1$guy,(R)4vR2dR '(9) 

uc = Z,, ~ Y p N u  0.5~,,, U,,. (10) 

so that 

Clearly zuYp (in general # zulY)  represents the number of y' type units 
which interact with a given y type unit with non-zero interaction 
energy. This resembles somewhat the lattice model, but there, 
values of z = 6 or 8 in a liquid phase, are taken as realistic ; the well 
known fact that z > 12 or even the procedure of letting z + co give 
reasonable values for thermodynamic functions is understa,ndable in 
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96 WITOLD BROSTOW 

terms of the present approach. Moreover, in the lattice theory a 
single value of z, independent of kinds of interacting units and 
usually also of concentration is used. 

Eventually in the most concise form, with NA the Avogadro 
number, we have per mole of units : 

N A  - uc = z, Z,? x,x,. u,,, N 
where 

$guur(R)4.rrRZdR 
V Uuur = NNA-,  

We proceed to consider volume. The relevant formula for pressure 
is 

Conhe  further considerations to pressures of few atmospheres, in 
thermodynamic units let us say to 

P <  1 J c ~ - ~  (14) 
As pressure is a difference of two large quantities on the r.h.s. of (13) 
we can now neglect it altogether. Therefore 

Denoting 

we have per mole of units 

-- NAv - z, 2u'x,x,~v,, 
N 

We have used V,,, = NAV,,,, and similarly U,,, = NAU,,.. Thus 
both (11) and (17) are of the general form (4). Specifically for the 
two functions under consideration we can now restate the basic 
proposition of Sec. 1 by saying that all u,,, and v,,, are composition 
independent a t  a given temperature and pressure. 

Consider now interrelations between configurational energy and 
volume. There are essentially two ways of doing it. One is to postu- 
late a model of a liquid and to find out U( V )  behavior corresponding 
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EQUILIBRIUM PROPERTIES IN T E E  LIQUID STATE 9 7  

to a given set of assumptions. This has been done by Snider(*) who, 
for one-component systems considered in turn the lattice gm and 
some hard-core models with attractive terms added. For the latter, 
potential energy was found to be a function of density alone ; the 
first term was linear in density, but the overall relation was not 
linear and contained still an integral involving g(R). Evaluation of 
the integral waa possible only when some further specific assumptions 
were made. 

The second approach is to express the relationship by U - V" and 
to attempt to find the exponent TZ from some experimental data. 
The idea is due to Frank@) and was considered since by a number of 
authors ; the most recent contribution to  the subject is by Bagley 
and his collaborators.('O) We follow this second route, assuming for 
our units 

where E ~ ~ ,  is a constant. 
next section) we can evaluate eyv, and nvu,. 

Then by pure thermodynamics (see the 

4. Thermodynamic Relations 

isobaric expansivity 
Consider some further thermodynamic functions. DeGne in turn : 

isothermal compressibility 

isochoric exertion 

and configurational heat capacity at constant volume 

The subscript N denotes diferentiation at constant concentration. 
Now Eqs. (1  1) and (17)  tell us, that formulas of the general form (4) 

A4 
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98 W I T O L D  BROSTOW 

may be used for aV, KV, or C?; for a and K we remember that 
assumption (14) has been made. 

The approach described at the end of Sec. 3 may also be applied 
to a quantity such as one mole of molecules of a substance i. 
Then 

Consequently 

We take that (23) with the same numerical values of the co- 
efficients nii applies also the gas phase. As we have limited ourselves 
to pressures specified by (14), it should be sufficient to write for the 
vapor 

PVv = NkT - BP (25 ) 

where B is the second virial coefficient. Introduce the enthalpy of 
vaporization RgaP = Uc vii - Ugii - P( VV,,  - V t J ,  with the sub- 
scripts V and L distinguishing phases. Now 

n. .  = Vii(Tyii - P )  - P(B;; P/Nk - T )  dB/dT 
HTP - P(NkT/P - Bii - Vi i )  %I 

with Vii  and yi i  referring to the liquid phase. 
The last relation with B = 0 has been used by previous authors to 

obtain a rounded value of n ; thus for hydrocarbons considered by 
Bagley et aZ.(10) is n = 1 +0.2. Our aim, however, is to substitute n 
from (26) into (24) ; from the resulting values of U z  one should be 
able to calculate the excess energy of mixing U E  and related 
quantities. 

Once we have at  disposal quantities like U$ and Vii we can obtain 
parameters UYY,, VYY,, and yyYt = a y y r / K y y r .  Values of the latter kind 
depend on the particular type of units considered (e.g. 2-walks). 
It is not our intention to write out here relations for various 
possible cases; at  a given T and P ,  relations of the form 
F,, = F,,,(Fii, F j j p . .  .) contain only concentrations as independent 
variables. Prom (18) 

T T  
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From the definition (20 )  we have 

We are thus able to compIete specification of the parameters in (18) 
i.e. in (1 1) : 

+ Y u u ,  (g)T,N]} 
5. Principle of Corresponding Volumes. Structural Schemes 

In terms of the present approach we would like to comment on the 
previously formulated principle of corresponding volumes for liquids 
and their mixtures.(’l) One of the ways of restating the principle is 
the following. Consider a group L of chemically similar substances 
.Li such as a series of homologs; a t  a specified temperature and 
pressure a thermodynamic property F is the same for all mixtures 
of Li such that the mixture molar volume is the same. Thus, what- 
ever the number of components in the mixture, including the case of 
pure substances, and whatever their relative concentrations, the 
molar value of F depends only on the resulting value of V per mole. 
The principle was intended for equilibrium properties, but it seems 
also to apply to transport properties. Thus, e.g. viscosity 7 of an 
ethanol + butanol mixture is the same as 7) of an ethanol + propanol 
solution which has the same molar volume as the first mixture.(’l) 

The intuitive argument which led to proposing the principle of 
corresponding volumes was, that the value of any thermodynamic 
property F necessarily reflects both interactions and structural 
relationships in the respective system. Therefore, “ horizontal ” 
relations between various F’s might be simpler than “ vertical ’’ 
between any P and the basic structureinteraction parameters. 
Obviously, any thermodynamic quantity could serve as the reference, 
and volume was chosen because of its experimental accessibility and 
relative physical perspicuity. 

We are now able to discuss the mechanism due to which the 
principle of corresponding volumes is confirmed by experiment. 
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100 W I T O L D  BROSTOW 

The point is, that a uniquely specxed set of numbers N ,  of inter- 
acting units corresponds to a chosen molar volume. On the other 
hand, the desired single set of N ,  may be realized by a number of 
d8erent mixtures of molecules belonging to the class L, with various 
Li containing the respective interacting units in various proportions. 

As for excess functions of mixing, consider the particular case of 
homogeneous molecules, i.e. such that each molecule contains only 
one kind of interacting units. With the further specific assumption 
that-for a given 1-is rz the same for all components, from (4) we 
have per mole of interacting units 

Thus, for a binary mixture a + b, with e.g. P = U ,  V is in such a case 

with the proportionality factor independent of composition. Some 
other sets of specific assumptions might also lead to relations such 
as (31). 

We shall consider briefly the so called structural schemes. These 
include the best known schemes for parachor, refractivity and 
polarizability. More than two dozen papers and two monographs 
have been written on structural schemes by Tatevskii and his col- 
leagues. (12) A number of thermochemical schemes was successfully 
generalized by Somayajulu and Zwolinski, (I3) who relate their 
treatment to the linear combination of bond orbitals (LCBO) method 
of The group solution model for equilibrium and trans- 
port properties developed by Ratcliff et a l . ( I 5 )  also makes use of a 
structural scheme. In  terms of graph theory the structural schemes 
and the LCBO approximation represent summing up contributions 
of walks on molecules. In most of the cases only walks which are 
paths i.e. these in which all points are distinct, have been considered. 

The main reason for invoking now structural schemes is the fol- 
lowing. Our treatment may easily be reduced to the generalized 
structural scheme, i.e. to the no-external-interactions situation : it is 
sufficient to assume in Eq. ( 3 )  that all 

f”,. = 0.5(fY* +f$ ( 3 2 )  
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Thus our pair approach represents the second step in a chain. The 
consecutive better approximation-triplets of walks-should become 
increasingly useful along with the improvement of present accuracy 
of experiments. 

6. Exemplary Calculations (Normal Alkanes) 
For the Grst calculations we have chosen normal alkanes and their 

mixtures. Relatively very large amount of data concerning various 
thermodynamic quantities is here available. Accuracy of experi- 
ments appears to  be higher for alkanes than for most of other sub- 
stances and mixtures. Many measurements have been made at  the 
room temperature, where the series is represented by 11 members in 
the liquid state. In fact, all reasons why alkanes are-apart of 
argon-the favorite choice of liquid state theorists appIy to our case, 
plus the fact that dealing with walks is here particularly clear. 

This is the 
customary assumption ; even if hydrogen atoms are included in 2, 
as end-points they are usually left unlabelled-the fact which led to 
recent studies of connected graphs with unlabelled end-points.(16) 
By definition r, = P. For any length 1 denote an entry in the 
adjacency matrix(3) by aij and the matrix itself by HZ, i.e. M 1  = {a:j]. 
Introduce further 

ai = C aij and at = C ail. 

We take that the set 2 consists of carbon atoms. 

r r 

j = 1  i=l 

Thenc4) 
rl = 0.5 a1 = 0.5 tr  M 2  
r, = 0.5(u2 - tr  N2) 

r, = 0.5(a3 - al - t r  M 3 )  

(33) 

(34) 

(35) 
In  the following we shall not need I', for I > 3. Graphs of n-alkanes 

are the simplest possible trees, so that values of r, might be ob%ained 
almost by inspection. The relations (33)-(35), however, are general 
-applicable to  graphs of any complexity, including graphs con- 
taining cycles. 

Further advantages of the graph approach may be seen e.g. if we 
reconsider the well-known problem of division of n-alkane molecules 
into segments. One possibility is to take CH, and CHI as segments, 
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102 WITOLD BROSTOW 

the other choice being CH, and CH,CH,. The alternatives have 
been discussed essentially in terms of volumes corresponding to 
segments in various cases. From the point of view of graphs thc 
problem is solved immediately, once we notice that CH, and CH, 
represents walks of the same length, while CH, and CH,CH, are of 
different length ; in our approach there is clearly no requirement of 
equal volumes of segments. 

The first thermodynamic property to be considered is the molar 
volume. 

VOLUME 
We assume two kinds of interacting units in an alkane molecule : 

terminal ones involving a CH, group-to be denoted by subscript e, 
and middle ones labelled by subscript M. For 2 = 0 (when according 
to our assumptions the end unit is the methyl group itself) and for a 
molar thermodynamic property P to which the Eq. ( 4 )  applies we 
now have specifically 

The above relation is valid for pure substances as well as for 
mixtures. The relations between x,, xe and various molecular 
concentrations xi are obvious, once we remember that for a s-com- 
ponent mixture is 

s 
r = C x i r i ;  

i= l  

similarly rm and r6 represent concentration 
r = r,-tTe. 

Numerical calculations described in this 

averages, always with 

paragraph are all for 
293.15K. We have taken a set of molar volumes for r = 6, 8 and 16 
and solved 3 Eqs. (36a) to obtain values of V,,, Vee and Vem. From 
the latter we have calculated excess volume for the equimolar 
mixture of hexane with hexadecane as V e  = - 0.52 cm3 mol-l. 

For I = 1 the formula replacing (36a) is 

as for any alkane (with or without branches) Eq. (33) gives TI = r - 1. 
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EQUILIBRIUM PROPERTIES IN T H E  LIQUID S T A T E  103 

We have made calculations in the same way as before and obtained 
VEs+la (2=o.5) = - 0.50 cm3 mol-l. 

For 1 = 2 correspondingly 

(r - r e  - 2)2 
2(r - 2) 

re2 
2(r - 2 )  

(r - re - 2 )  re 
P =  Frnrn + ___ F e e +  r - 2  F e r n  

as for any n-alkane Eq. (34) gives r, = r - 2 .  Analogous calculations 
gave Vf,,, (2=o.5) = - 0.48 cm3 mol-l. Diaz PeHa and Benitez de 
Soto(l7) determined experimentally Vt+18 for a number of concen- 
trations and temperatures and described their results by a series in 
powers of zi - zj and of temperature ; the respective value resulting 
from their expansion is - 0.487 cm3 mol-1. 

The same Vwv,  parameters which predicted V:,,, values were not 
equally satisfactory for describing molar volumes of other hydro- 
carbons. Instead of basing on 3 experimental values (with arbitrari- 
ness involved in choosing a particular value among available 
experimental data for a given hydrocarbon) we have therefore 
combined different molar volumes for alkanes-including alternative 
data for 
resulting 

the same substances-to obtain Vww,  parameters. 
values for I = 0, 1 and 2 are listed in Table 1. 

The 
Molar 

TABLE 1 Vwt Parameters for n-alkanes at 293.15 K 

Vmm ve4 vem 
cm* mol-l cm3 rno1-l ern3 mol-l 

l = O  32.965 73.062 46.782 
1 = 1  32.866 86.325 56.481 
1 = 2  32.758 100.427 64.095 

volumes obtained therefrom are given in Table 2 within &0.001 
cm3 mol-l so as to show more clearly the effect of varying 1. Ex- 
perimental data which have been taken into consideration are listed 
in the same table. Purther, using exactly the same sets of Vwwt 
parameters we have calculated V E  values for these equimolar binary 
mixtures for which experimental values were available and also for 
hexane + hexadecane mixtures at 0.1 concentration intervals. The 
results of calculations and the respective experimental values 
(within 0.001, even if accuracy of a particular measurement might 
be e.g. * 0.02) are given in Table 3. 
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104 WITOLD B R O S T O W  

TABLE 2 Molar Volumes of n-alkanes at 293.15 K 

r V 
cm*mol-l 

Experimental 1 = 0 1 = 1  1 = 2  

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
16 

11 5.198 
115.20C 
130.67a.d 
130.68b.e 
130.95C 
146.56C 
146.598 
162.59C 
162.648 
162.65b 
178.688 
178.71C 
194.87a 
194.93C 
211.14a 
211.17C 
227.428 
227.460 
227.48C 
243.65a 
243.82C 
260.098 
259.81e 
276.398 
292.72e 
292.74a 
292.818 
292.86b 

115.032 

130.684 

146.573 

162.611 

178.747 

194.953 

211.209 

227.503 

243.825 

260.171 

276.535 
292.914 

115.076 

130.686 

146.570 

162.611 

178.750 

194.954 

211.204 

2 2 7.4 8 7 

243.795 

260.122 

276.465 
292.819 

115.141 

130.688 

146.567 

162.613 

178.755 

194.955 

21 1.195 

227.463 

243.752 

260.055 

276.370 
292.694 

~ ~ ~ ~~ ~~ 

(a) R. A. Orwoll and P. J. Flory, J. Am. Ghem. SOC., 89,6814 
(1967) TableV; (b) ibid., Table 1; (c) Ref. 12b; (d) Ref. 17; 
(e) G. H. Findenegg, Monatsh., 101, 1081 (1970). 
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EQUILIBRIUM PROPERTIES IN THE LIQUID STATE 105 

TABLE 3 Excess Molar Volumes of n-alkanes at 293.15K 

V E  
cm*rnol-’ 

Experimental l = O  1=1 1=2 

5 

7 
8 

10 

6 
5 
6 
6 

6 

6 

6 

6 

6 

6 

6 

6 

16 

16 
16 
16 

12 
10 
10 
16 

16 

16 

16 

16 

16 

16 

16 

16 

0.6 

0.5 
0.5 
0.5 

0.5 
0.5 
0.6 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.82& 
0.827b.c 
0.31a 
0.19a*c 
0.73b.c 
0.708 
O.4Oc 
0.31a.C 
0.418b.C 
0.200b.c 
0.1136 
0.1218 
0.2276 
0.228e 
0.3326 
0.326e 
0.4206 
0.413C 
0.493C 
0.487c.d*e 
0.5246 
0.526e 
0.5206 
0.5248 
0.4636 
0.4558 
0.2946 
0.2918 

0.898 

0.392 
0.269 
0.108 

0.346 
0.415 
0.208 
0.156 

0.297 

0.420 

0.519 

0.590 

0.623 

0.606 

0.519 

0.334 

0.874 

0.353 
0.228 
0.092 

0.336 
0.440 
0.208 
0.141 

0.270 

0.384 

0.479 

0.648 

0.585 

0.576 

0.502 

0.329 

0.846 

0.304 
0.191 
0.073 

0.320 
0.473 
0.208 
0.123 

0.238 

0.340 

0.429 

0.496 

0.535 

0.635 

0.476 

0.322 

(a) A. Desmyter and 3. H. van der Wads, Recueil Trav. Chim. Pays-Bas, 
77,53 (1958); (b) M. L. McGlashan and K. W. Morcom. Tram. Faraday Soo., 
57, 907 (1961); (c) As compiled by Stoeckli et a2. in Ref. 19 on the basisof 
literature data and some their own measurements; (d) M. L. McGlashan, K. W. 
Morcom and A. G. Williamson, Tram. Farday SOC., 57, 601 (1961); (e) Ref. 17. 
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106 W I T O L D  B R O S T O W  

We could have made the next step to I = 3, with the total number 
r3 of equivalence classes of interesting walks for any molecule (for 
such short and open walks as we consider, an equivalence class 
contains exactly one element) given by Eq. (35). Qualitatively, 
however, the situation would change, because we would have to 
consider more kinds of walks. For a n-pentane molecule, denoting 
consecutive segments as e, m,, m2, m3 and e ,  we have walks emlm2~3,  
em1m2m1, mlemlm2 and m1m2m3m2, and consequently 10 types of 
pair interactions. For longer molecules the number of parameters 
to be considered would be still higher. This is why we have confined 
ourselves to 1 = 0, 1 and 2, when the assessment of improvement 
caused by increasing I is particularly clear. 

Our results should contrast favorably with structural schemes, as 
we know of no reason why Eq. (32) should hold. Williamson and 
Scott(l) used what amounts to a structural scheme (additive con- 
tributions of carbon atoms) to  describe molar volumes of n-alkanes 
at  298.15K; the standard deviation of calculated values from 
experimental ones for what they call the best equation is 0.38 
cm3 mol-l. For pure components our standard deviations from 
averages of the experimental values (disregarding the highest value 
for hexane and the lower for tetradecane) for I = 0, 1 and 2 are 
respectively 0.087, 0.054 and 0.042 cm3 mol-I. A no-external- 
interactions treatment, has, moreover, a basic defect : all excess 
functions of mixing are automatically zero (unless of course, 
non-linear terms are introduced). 

Main conclusions from inspection of Tables 2 and 3 are the fol- 
lowing. Firstly, for given I using a set of 3 parameters (obtainable 
basically from 3 exact measurements) it is possible to calculate 
molar volumes of n-alkanes, molar volumes of their mixtures of any 
number of components and composition, and in consequence also 
volumes of mixing. Secondly, accuracy of the description increases 
along with I ;  values for the smallest molecule i.e. n-pentane in 
Table 2 are particularly indicative in this respect. For I = 2 the 
calculated values (except for n-pentane and the 5 + 10 mixture) are 
clearly within limits of the experimental accuracy. 

EXPANSMTIES 
We performed similar calculations using Eq. (36) with P = aV 
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a t  293.15K, confining ourselves to I = 0 in view of limited accuracy 
of experimental data. The respective parameters are (aV),, = 

0.02415 cm3 K-l mol-l, (aV)cs  = 0.25416 cm3 K-l mol-l and (aV),, = 

0.0463 1 cm3 K-l mol-l. Values of isobaric expansivities calculated 
therefrom along with the respective experimental data are given in 
Table 4. 

TABLE 4 Isobaric Expansivities of n-alkanes 
at 293.15 K 

l O S a  

K-1 r __ 

Experimental l = O  

5 
6 

7 

8 

9 
10 

11 
12 

13 
14 

15 
16 

1.59" 
1.35a 
1.364b 
1.366e 
1.367c 
1.369d 
1.23" 
1.243b 
1.146c 
1.15" 
1.151b 
1.085b 
1.048 
1.045b 
1.006b 
0.9674 
0.974b 

0.914b 
0.9306 
0.901 
0.878b 
0.8858 
0.t390e 
0.893d 
0.897c 

- 

1.556 
1.367 

1.241 

1.153 

1.087 
1.037 

0.998 
0.967 

0.943 
0.924 

0.907 
0.890 

(a) estimated within about 3% from earlier 
1iteraturedatabyM.L.McGlashan and K. W. 
Morcom, Trans. Faraday SOC., 57,907 (1961) ; 
(b) As footnote (a), Table 2, (c) As footnote 
(b), Table 2; (d) As footnote (e),  Table 2; 
(e) Ref. 17. 
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10s W I T O L D  B R O S T O W  

Using the same set of parameters, for mixtures of hexane with 
hexadecane we have calculated excess expansivities UE defined 
exactly as 

where VI is the ideal volume of mixing. The results are compared 
with the experimental values of Diaz Peiia and Benitez de 
in Table 5. 

Comments on the extent of agreement seem superfluous. 

TABLE 6 Excess Isobaric Expmivities for Hexane 
(1) +Hexadecane (2) Mixturesat 293.15B 

Experimentala I = O  

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

- 0.029 
- 0.042 
- 0.046 
- 0.044 
- 0.039 
- 0.032 
- 0.023 
- 0.014 
- 0.006 

- 0.031 
- 0.044 
- 0.047 
- 0.044 
- 0.039 
- 0.032 
- 0.024 
- 0.016 
- 0.008 

(a) Ref. 17. 

COMPRESSIBILITIES 
Calculations for KV have been made analogously &s for aV. The 

parameters again for Z = O  and 293.15K are (IcV),, = 0.01751 
J-Icm6mol-l, ( K ' V ) ~ ~  = 0.35388 J + ~ r n ~ r n o l - ~ ,  (KV),, = 0.05134J-l 
cm6mol-l. The results for pure components are given in Table 6, 
excess values 

for 6 + 16 mixtures in Table 7. Conclusions reached above are clearly 
reiterated for isothermal compressibility. 
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TABLE 6 Isothermal Compress,ibilities of 
n-alkanes at  923.15 K 

T 

~ ~ ~ 

Experimental l = O  

5 
6 

7 
8 

9 
10 
11 
12 
13 
14 
15 
16 

1.898 
1.54a 
1.60W 
1.625b 
1.34a 
1.21a 
1.258b 

1 .04a 
- 

- 
0.826C 
0.838b 
0.848 

1.900 
1.605 

1.403 
1.260 

1.153 
1.072 
1.008 
0.956 
0.914 
0.879 
0.850 
0.824 

(a) As footnote (a), Table 4; (b) from y ( T )  re- 
lation given by R. A. Orwoll and P. J. Flory, 
J .  Am. Chm.  Soc., 89, 6814 (1967); (c) Ref. 17. 

TABLE 7 Excess Isothermal Compressibilities 
for Hexane (1) +Hexadwane (2) Mixtures a t  

293.15 K 

X l  

Experimentala l = O  

0.1 
0 2  
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

- 0.046 
- 0.066 
- 0.068 
- 0.067 
- 0.060 
- 0.050 
- 0.038 
- 0.025 
- 0.013 

- 0.046 
- 0.065 
- 0.069 
- 0.066 
- 0.058 
- 0.047 
- 0.036 
- 0.024 
- 0.012 

(a) Ref. 17. 
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110 WITOLD BROSTOW 

HEATS OF MIXING 

In view of Eqs. (1 1) and (17), at constant pressure Eq. (4) applies 
also to the sum UC +PV = H C ,  what should enable immediate 
calculations of excess heats of mixing. Having already dealt with 
V ,  a and K ,  according to Eq. (24) the problem comes to that of 
obtaining nii for 3 n-alkanes. As HE is a small difference of quan- 
tities several orders of magnitude larger, highly accurate values of n 
are needed. Apart of parameters we already have at disposal, 
Eq. (26) demands the knowledge of heats of vaporization and also 
of second virial coefficients as functions of temperature. While 
reasonably accurate HvaP values can be obtained from Antoine 
equation for vapor pressures, we encounter practical difficulties 
concerning B( T). Experimental measurements of second virial 
coefficients of alkanes of McGlashan and Pottercls) have been made 
at higher temperatures. Their corresponding states correlation, 
highly accurate at temperatures of actual experiments, unfortu- 
nately does not extend down to the room temperature, particularly 
for higher values of r .  While problems with accessibility of some 
experimental data do not undermine the validity of Eqs. (24) and 
(26) based on thermodynamics, we have turned to a roundabout 
procedure. 

Basing on a set of HE values of some equimolar alkane mixtures 
compiled by Stoeckli et uZ.,(19) we have generated approximate HC 
values of pure substances by a computer procedure. Such set of 
values is shown in Table 8. It is at least possible to prove that the 
H C  set is reasonable. We have in fact performed calculations using 
Eqs. (26) and (24) for n-pentane and n-hexane, where errors of B(T)  
extrapolation below the experimental range are the smallest, while 
using Antoine equation constants from Ref. 20. The results are 
HC = - 24568 J mol-1 for pentane, and - 28283 €or hexane, certainly 
in as good agreement as could be expected with the values in Table 8. 

Values of HC in Table 8 have been obtained using Eq. (36a) 
and parameters Hgm = - 7929 J mo1-1, H e ,  = - 14185 J mol-l and 
H,C, = - 9745 J mol-l. Using the same parameters and Eq. (30) 
we have calculated excess heats of mixing. The results along with 
the experimental values as listed in Ref. 19 are shown in Table 9. 
By further manipulation we could improve Hge parameters and so 
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EQUILIBRIUM PROPERTIES I N  THE LIQUID STATE 111 

the extent of agreement concerning H E ;  for the present essentially 
illustrative purposes it did not seem worthwhile. We have, however, 
performed some preliminary calculations of H E  for higher tempera- 
tures, in connection with the change of sign of heat of mixing found 
by McGleshan and his colleagues. (21) For negative and S-shaped 
curves of heat of mixing versus composition the same approach was 
found applicable. 

TABLE 8 Configurational Enthalpies 
Hc of n-alkanes at 293.15 K 

- HC 
J mol-I T 

5 24504 
6 28293 
7 32133 
8 36003 
9 39895 

10 43801 
11 47717 
12 51642 
13 55573 
14 59508 
15 63448 
16 67390 

TABLE 9 Heats of Mixing of Equimolar Mixtures of 
n-alkanes at 293.15 K 

ri *j 

HE 
Jmol-' 

Experimentala l = O  

5 
6 

7 
8 

10 
6 
5 
6 

16 
1% 

16 
16 
16 
12 
10 
10 

151.3 
129.0 
127.5 
112.0 
86.5 
49.2 
45.5 
25.5 
17.4 

188.9 
124.2 

82.5 
54.7 
22.7 
72.8 
87.4 
43.7 

(a) Ref. 19. 
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112 WITOLD BROSTOW 

As calculations described in this paragraph are exemplary, we 
have confined the results to a single temperature. For the same 
reason we have not included results of calculations of adiabatic 
compressibilities, where the pattern is quite similar to that for the 
respective isothermal quantity. Clearly, a more detailed pursuit of 
thermodynamic behavior of n-alkanes and their mixtures-in 
particular as a function of temperature-would be worthwhile. In 
view of recent accumulation of experimental values@2) concerning 
volumes, expansivities and isothermal compressibilities at  a number 
of temperatures, this, however, would mean embarking on a fairly 
large-and therefore necessarily separate-pro ject. 
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